Total loss estimation using copula-based regression models
نویسندگان
چکیده
منابع مشابه
Copula-Based Regression Estimation and Inference
In this paper we investigate a new approach of estimating a regression function based on copulas. The main idea behind this approach is to write the regression function in terms of a copula and marginal distributions. Once the copula and the marginal distributions are estimated we use the plug-in method to construct the new estimator. Because various methods are available in the literature for ...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملTwo-stage estimation using copula function
Maximum likelihood estimation of multivariate distributions needs solving a optimization problem with large dimentions (to the number of unknown parameters) but two- stage estimation divides this problem to several simple optimizations. It saves significant amount of computational time. Two methods are investigated for estimation consistency check. We revisit Sankaran and Nair's bivari...
متن کاملCopula regression spline models for binary outcomes
We introduce a framework for estimating the effect that a binary treatment has on a binary outcome in the presence of unobserved confounding. The methodology is applied to a case study which uses data from the Medical Expenditure Panel Survey and whose aim is to estimate the effect of private health insurance on health care utilization. Unobserved confounding arises when variables which are ass...
متن کاملEstimation of copula-based semiparametric time series models
This paper studies the estimation of a class of copula-based semiparametric stationary Markov models. These models are characterized by nonparametric marginal distributions and parametric copula functions, while the copulas capture all the scale-free temporal dependence of the processes. Simple estimators of the marginal distribution and the copula parameter are provided, and their asymptotic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Insurance: Mathematics and Economics
سال: 2013
ISSN: 0167-6687
DOI: 10.1016/j.insmatheco.2013.09.003